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The growth of perturbations on a capillary jet issuing from a circular nozzle in
the Rayleigh regime is experimentally investigated. Electrohydrodynamic sinusoidal
stimulation is employed to this end, along with two independent methods to obtain
growth rates of the linear regime with the best accuracy so far. The first method
exploits the correlation between the stimulation voltage and the breakup time
measured with the help of stroboscopic images of the jet. The second method is
an analysis of the spatial evolution of perturbations through a local jet-shadow-width
photometry, with careful avoidance of the initial transient and the final nonlinear
stages. Experiments conducted with ink allow the application of both methods,
as the liquid is opaque. They give consistent results, with very small statistical
errors, with respect to the expected theoretical dispersion relation, once the dynamic
surface tension is adjusted. The adjusted value is in accordance with an estimate
made from drop-dynamics experiments also reported here. By dealing with a simpler
liquid (aqueous solution of NaNO3), we are able to compare results from the first
method against the theoretical predictions without adjustment of any parameter. The
agreement is again excellent. Possible sources of systematic errors in this kind of
measurements are identified and procedures for avoiding them are designed.

1. Introduction
The description of the instability of a capillary jet issuing from a nozzle in a

gaseous ambient is a classical success of a hydrodynamic linear theory, as it is able to
predict with reasonable accuracy both the breakup length of periodically perturbed
jets and the size of the resulting drops. It was Rayleigh (1878, 1892) who derived the
dispersion relation for this problem, using as physical model an infinitely long liquid
column observed from a framework in which the column is at rest. By dispersion
relation we mean, in the context of hydrodynamic stability, the dependence of the
frequency with the number in a linear modal analysis of the column. In general, the
frequency has a complex character that mathematically describes a wave propagation
with growing or decaying amplitude. This depends on the sign of the imaginary part
of the frequency, called growth rate. A detailed description of this physical model,
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usually known as temporal instability analysis, and some relevant predictions from it
will be given in the next section.

The theory has been progressively refined (Eggers 1997; Eggers & Villermaux 2008).
Weber (1931) considered the effect of the surrounding gas in relative motion with
respect to the jet. He assumed a difference in velocity between gas and liquid at the
free surface, leading to the Kelvin–Helmholtz instability. Keeping apart the influence
of the outer gas, Keller et al. (1973) changed radically the perspective of the instability
problem – a more realistic one – by means of a spatial description of the growth of
perturbations, viewed from the laboratory framework: the spatial instability analysis.
In the same article, they connected temporal and spatial analyses and demonstrated
their equivalence in the limit of high velocity of the jet (compared to the phase
velocity of capillary waves). As a consequence, the temporal approach was not given
up when studying jets with such velocities. For example, Sterling & Sleicher (1975)
proposed a semiempirical temporal model to account for the viscosity of the outer gas
that agreed better with his experimental data than Weber’s theory. Their model was
experimentally tested by Kalaaji et al. (2003) and theoretically clarified by Gordillo
& Pérez-Saborid (2005) with the help of a spatially developing boundary layer. The
basic unperturbed flow is no longer translationally invariant, as the viscous stress
at the free surface is different at each axial position. The consequence is the need
of a redefinition of the growth rate that becomes a local parameter that eventually
could be averaged throughout the linear evolution of the flow. The same difficulty
arises when gravity effects are non-negligible (Cheong & Howes 2004), but no specific
calculation of a correction of the Rayleigh dispersion relation has been carried out
up to now.

Another possible complication in real systems is the existence of a transient region
between the nozzle exit and the stream stage beyond which the velocity profile can be
considered virtually flat and the jet radius uniform (Scriven & Pigford 1959; Gavis &
Modan 1967). For viscous fluids the momentum diffusion is efficient enough and the
transition should not extend much further than a distance of the order of the wall
thickness.

Finally, for liquids with a certain amount of surfactants, the surface tension of
the fresh free surface may vary considerably just in a time lapse of the order of the
breakup time (Ronay 1978a), leading to further complications in the description of
the jet dynamics. In view of that, the original idea of an infinite column sinusoidally
perturbed everywhere in an non-interacting outer medium seems too simplistic, but
experience has shown us that, for a certain range of jet velocities, predictions from
this simple model are true with very good approximation.

Besides from experimental studies on free jets, mainly interested in the average
breakup length and the dispersion in drop sizes, in the literature we find many
experimental works on forced jets (Donnelly & Glaberson 1965; Goedde & Yuen
1970; Bruce 1976; Taub 1976; Pimbley & Lee 1977; Cline & Anthony 1978;
Chaudhary & Maxworthy 1980; Wetsel 1980; Collicott et al. 1994; Chauhan et al.
2003; Kalaaji et al. 2003). Forced jets are periodically stimulated by a variety of
possible means (acoustically, electrically, with a piezoelectric transductor, etc.) leading
to a dominant perturbation with definite wavelength. The breakup process is highly
repetitive in this case provided that the amplitude of the selected perturbation clearly
stands out from noise. The growth rate corresponding to the selected wavelength
is now the parameter of interest, as well as the drop characteristics (size, existence
of satellites, etc.). Particularly, the measurement of growth rates allows to envisage



The measurement of growth rates in capillary jets 181

a quantitative comparison with the specific dispersion relation corresponding to the
experimental conditions.

Among the works on forced jets mentioned above we can find some attempts to
experimentally validate a dispersion relation. Two optical techniques were employed
to this end: (i) stroboscopic or high-speed capture of images of a relevant portion
of the jet and (ii) temporal analysis of a shadow-width photometry at specific
positions in the flow, only suitable for opaque liquids (see Xing et al. 1996, for a
thorough description). With the help of any of these techniques, these experimenters
designed two different methods for measuring growth rates, namely, (i) the breakup
method, which exploits a known relation between the length of the unbroken part
of the flow and the initial amplitude of the induced perturbation and (ii) what we
will call the amplitude-evolution method, which directly extracts the growth rate
from the spatial evolution of the perturbation. Donnelly & Glaberson (1965) and
Goedde & Yuen (1970) used the amplitude-evolution method from spark-illuminated
photographs. Collicott et al. (1994) and Chauhan et al. (2003) followed the same
procedure taking advantage of a coupled charge device (CCD) and digital fast cameras
for image acquisition, respectively. Taub (1976) and more extensively Wetsel (1980)
obtained growth rates through the amplitude-evolution method using the shadow-
width photometry technique with the help of a laser. Bruce (1976), Pimbley & Lee
(1977) and Cline & Anthony (1978) applied the breakup method to stroboscopic
images of the jet. Finally, Kalaaji et al. (2003) implemented both the breakup method
via stroboscopic images and the amplitude-evolution method through the shadow-
width photometry techniques, but preferred the first method to obtain growth rates.
However, due to a variety of reasons, the agreement in these previous works was
not better than 5% with respect to the theoretical predictions. The reduction of this
inaccuracy and the statement of a correct measurement procedure has remained a
challenge. These goals, achieved in the simplest situation, are necessary and prior to
the consideration of any of the complications mentioned above (gravity, surrounding
air, etc.). From a practical viewpoint, a precise determination of the growth rate
has been proposed as a method of measurement of dynamic surface tension (Ronay
1978b; Alakoç et al. 2004). These are the motivations of this article. The experiments
here reported belongs to the category of forced jets, with stimulation induced by
electrohydrodynamic (EHD) means.

EHD stimulation was already employed by Goedde & Yuen (1970) for not very
viscous fluids. They reported the application of a sinusoidal voltage to a thin electrode
with a circular hole through which the jet passed. The electric pressure on the
surface of the conducting liquid advectively impresses a periodic perturbation on
the jet as it flows with constant velocity. This method is called ‘EHD excitation’
in the literature (Crowley 1983) or ‘EHD stimulation’ (Atten et al. 1995; Barbet
1997). In Crowley (1983) the essentials of EHD stimulation are characterized. Our
choice of EHD stimulation is motivated by the ease of control of the perturbation
amplitude. With mechanical or piezoelectric stimulation, there is neither a universal
nor a simple correlation between the amplitude of stimulation and the amplitude of
the jet perturbation (Chaudhary & Maxworthy 1980). Conversely, EHD stimulation
guarantees a quadratic dependence between the perturbation amplitude and the
applied voltage amplitude, as it will be demonstrated in § 3.5.1. A so simple correlation
is convenient to the breakup method.

Two different water-based liquids have been employed in this work, namely, ink and
a solution of a salt. The ink is opaque, thus it is possible to use it in the shadow-width
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photometry technique, but its surface tension changes with time. Conversely, the
salt solution is transparent, but its surface tension has a static known value. The
experiments with the ink allows the comparison between the two methods. The second
liquid provides us with an absolute validation of the applicable theory, without the
adjustment of a free parameter.

The main goals of the work are: (i) to present the results of careful measurements
of growth rates by the two independent methods described above; (ii) to discuss
the correct selection of a theoretical model in order to compare with experimentally
obtained growth rates and (iii) to show the proper use of EHD stimulation for these
measurements.

In the next section, a comparison between temporal and spatial approaches is
presented, as it is a central point in the interpretation of our experimental results. In
§ 3, the reader will find the description of the experimental setup and the methods
of measurement of all relevant quantities: velocity, radius, fluid properties of the two
liquids used in the experiments and growth rate. As one of the liquids – the ink –
has a dynamic surface tension, a drop-dynamics technique for an estimation of this
parameter is also reported in the same section. Concerning the measurement of growth
rates, a detailed analysis of the breakup method and the amplitude-evolution method
is carried out. The role of the electrical shielding in EHD stimulation is analysed
as well. Results of growth rate measurements for an ink jet by the two methods
and for the aqueous-solution jet by only the breakup method are presented in § 4.
Other relevant results extracted by us from previous literature are also reported. The
agreement between the growth rates obtained from each technique, as well as with
the appropriate theoretical model, is discussed in § 5. Finally, the main conclusions
are drawn.

2. Temporal versus spatial theory
Let us first consider the problem of a jet not influenced by the surrounding gas,

in the absence of gravity. The physical properties of the liquid necessary to describe
this system are the density ρ, the dynamic viscosity μ and the surface tension γ .
Rayleigh’s approach (Rayleigh 1892) to the capillary instability was to consider a
portion of the jet as a part of an infinitely long column with radius that of the jet, R,
at rest in a frame moving itself with the jet velocity v. The column shape is perturbed
along its infinite extent as described in cylindrical coordinates by

f (z, φ, t) = Re{fm exp[i (kz − Ωt + mφ)]}, (2.1)

i.e. a sinusoidal wave with wavenumber k. Here, the non-negative integer m is usually
called the azimuthal number. Ω is allowed to be complex (Ω = ΩRe + iΩIm), with ΩIm

the previously referred growth rate. Accordingly, the amplitude of the perturbation
evolves in time, leading to a damping for ΩIm < 0 (stability) or a growth for ΩIm > 0
(instability), with a subsequent breakup into drops in the last case. As mentioned,
this approach is called temporal stability analysis. It could also be considered as a
local theory, in the sense that it is sustained by the observation of a portion of the
jet of length λt ≡ 2π/k, which we shall call temporal wavelength, and does not pay
attention to what happens upstream and downstream.

We remit the reader to a careful revision of the temporal analysis carried out
in Garcı́a & González (2008), which includes the description of capillary and
hydrodynamic modes. Two parameters are usually defined to describe the behaviour
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of capillary jets in this approach, namely, the capillary time

tc ≡

√
ρR3

γ
,

which is the typical time scale for the evolution of the jet, and the Ohnesorge number

C ≡ μ√
ργR

,

interpreted as the ratio of viscous to capillary forces. Once the analysis is done, the
sinusoidal wave perturbation is found to be unstable only for m =0 and kR < 1,
independently of the viscosity of the liquid. This case is also characterized by the
absence of oscillations (ΩRe = 0) and, consequently, a zero phase velocity ΩRe/k,
i.e. the observer sees a simple growth of the amplitude, without propagation. From
this result, in principle another observer in the laboratory frame could measure
the jet velocity by means of the velocity of a crest. The same observer could
also extract the temporal growth rate from the amplitudes and positions of the
crests at a given time by means of a linear correlation between the positions of
the maxima and the time required by the flow to reach them: if zn is the axial
position of the nth crest, the corresponding time is tn = zn/v, and the amplitude is
predicted by fn = f0 exp(ΩImtn) = f0 exp(ΩImzn/v). In this temporal stability analysis,
the stimulation plays the role of a wavelength selector: for a stimulation period T ,
the corresponding wavelength is λt = vT and the wavenumber is k = 2π/(vT ).

We recall that f (z, φ, t), as given by (2.1), corresponds to one among a complete
set of normal modes that are solutions of the evolution equations. These modes must
be combined to verify the initial conditions for deformation and velocity, as described
also in Garcı́a & González (2008).

On the other hand, the spatial stability analysis, presented by Keller et al. (1973)
for inviscid liquids and by Leib & Goldstein (1986) for viscous liquids, implies a more
realistic point of view. The jet is not considered as an infinite column but issuing
from a nozzle. The jet velocity plays now a relevant role, so it is advantageous to
define a new parameter, the Weber number

We ≡ ρRv2

γ
,

which represents the squared ratio of the jet velocity to the capillary velocity R/tc
(the natural scale for velocity of propagation of capillary waves). The Reynolds
number Re = ρvR/μ is related to the previously defined non-dimensional numbers
through Re = We1/2/C, so it will not enter in our description of the system. The shape
perturbation is now built as a sinusoidal wave with amplitude dependent on the axial
coordinate, which is

f (z, φ, t) = Re{fm exp[i (ωt − Kz − mφ)]}, (2.2)

with ω real and K =KRe + i KIm complex. In this way, we are proposing that the
amplitude at the stimulation position varies sinusoidally. Again, the initial-value
problem should be connected to this normal-mode description. The perturbation
propagates downstream with phase velocity ω/KRe. When the amplitude exponentially
decreases for increasing z, the perturbation is stable. Conversely, when the amplitude
exponentially increases, the perturbation is unstable: a drop periodically detaches
itself from the jet at a fixed position, with frequency ω. The breakup length Lb
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Figure 1. Ratio of phase velocity ω/KRe to the jet velocity v as a function of the non-
dimensional wavenumber KReR, for different Weber numbers. We = 60 is relevant to our
experiments with ink. The solid lines correspond to an inviscid liquid and the dashed line to
a viscous one with C = 0.02, also related to these experiments. The point-dashed line shows
the reference level ω/(KRev) = 1. Although apparent, there is no common intersection of lines
with same value of C.

is the distance between that point and the position where the stimulation acts.
The expected evolution observed in the laboratory frame is periodic at every jet
position, with frequency ω, with the amplitude depending on the position. Again, only
axisymmetric perturbations, with KReR < 1, are unstable (i.e. KIm > 0), according to
the spatial stability analysis. Note that, for the spatial description, the stimulation
fixes the angular frequency ω = 2π/T , instead of the spatial wavelength λs ≡ 2π/KRe

(in general different from the temporal wavelength λt ), which is obtained from the
solution K(ω) of the dispersion relation.

The spatial-instability approach is the most obvious for an experiment of a
stimulated jet. In order to adopt the simpler temporal-instability approach, we must
validate two assumptions:

(i) The spatial wavenumber KRe coincides with that given by the temporal
analysis k = 2π/(vT ). Equivalently, the phase velocity ω/KRe coincides with the fluid
velocity v.

(ii) The spatial growth rate KIm coincides with ΩIm/v.
In other words, the spatial periodicity and spatial growth are advective propagations of
the temporal periodicity and temporal growth induced by the stimulation, respectively.
By advective propagation we mean ‘consequence of the motion of the fluid with
velocity v’. The spatial analysis states that these assumptions are never strictly correct,
although they are very approximate for We � 50. To this respect, figure 1 helps to
check the assumption KRe � k for different Weber numbers. From the figure it is also
noteworthy that an observer moving with the fluid velocity v sees a capillary wave
travelling downstream or upstream, depending on the wavenumber. Only one specific
mode, with wavenumber slightly dependent on We and C but always in the region
of maximum growth rate, does not propagate in that reference system. In contrast,
in the temporal-instability approach, no propagation is predicted for any unstable
mode.
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Figure 2. Difference between the temporal growth rate and its spatial counterpart, relative to
the maximum temporal growth rate, computed from the spatial and the temporal dispersion
relations, as a function of the non-dimensional wavenumber kR. The curve is calculated for
values of C and We corresponding to the experiments with ink.

Under the condition KRe � k, the determination of the spatial wavelength gives us a
simple method to measure the velocity of the flow (v = λs/T ). Otherwise, the relation
KRe = KRe(ω, We) = 2π/λs still could serve us to obtain We from ω and λs and then
to deduce the value of v from the definition of this non-dimensional number.

In relation to the assumption KIm � ΩIm/v, the question of how to relate the
temporal growth rate with the measured quantities arises. In principle, a change to
the framework where the unperturbed jet is at rest yields ΩIm = vKIm. However, in
general, we do not have a pure growth of the perturbation in this reference system,
but also a propagation. To observe a pure growth we must change to another system
with velocity equal to the phase velocity of the perturbation, leading alternatively to
the relation ΩIm = (ω/KRe)KIm. Obviously, the temporal approach is strictly valid in
the limit We → ∞, for which the ambiguity in this correspondence disappears. As
the phase velocity is different for each wavenumber, we find more natural, following
Keller et al. (1973), vKIm as the quantity equivalent to ΩIm in the experiments.

In the context of spatial theory, plots of KImR versus KReR for different Weber
and Reynolds numbers are found in figures 2–4 in Leib & Goldstein (1986), but if we
are interested in the temporal approach, we find the representation KImRWe1/2 versus
ωR/v more useful, as done in figure 7(b) in Chauhan et al. (2003). To give an idea
of the error committed when adopting the temporal dispersion relation, under our
experimental conditions, we present in figure 2 the difference ΩIm − vKIm, relative to
the maximum growth rate. This relative difference almost reaches 6 % very close to
kR = 1, but remains below 1 % for kR < 0.95. For very precise measurements of the
growth rate we are forced to use the spatial dispersion relation.

3. Experimental setup and methods
3.1. EHD stimulation

The system under experimental study is an electrically highly conducting liquid jet
issuing vertically from a circular nozzle and surrounded by air at atmospheric pressure.
The nozzle is grounded. At a short distance from the exit, between 3 and 6 mm, the jet
is stimulated by a thin electrode at high-voltage placed very close to the free surface
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Figure 3. Experimental setup. (a) Detail of the stimulation and shielding electrodes.
(b) General setup with the two optical acquisition techniques represented.

(see figure 3a). Another electrode, which is grounded, is placed below and close to
the former for shielding purposes. Free charge accumulates almost instantaneously
on the jet surface just in front of the electrode, where the strength of the electric field
is maximum. The effect of the resulting quasi-electrostatic pressure on the jet is an
EHD swelling acting very locally. The high-voltage signal is generated by means of
a personal computer including a digital-analogue conversion board (Keithley DAS-
1802AO) and a high-voltage amplifier (Trek 5/80). A Testpoint application digitally
generates a low-voltage signal that is converted to an analogue signal and finally
amplified to feed the stimulation electrode. Sinusoidal voltage signals are usually
applied, but any other waveform is possible. In particular, the intermittent EHD
stimulation (Hrdina & Crowley 1989) has served us to generate isolated drops with
suitable deformations to estimate the dynamic surface tension of the liquid (see § 3.4.2).

Our stimulation electrode is an optical iris diaphragm made of 10 thin stainless-steel
leaves, with a minimal aperture of approximately 600 μm in diameter. Another coaxial
iris diaphragm, grounded and more extended, is placed parallel to the former a few
millimetres below it so as to prevent the electric field from acting on a significant part
of the jet. The need of this shielding is discussed in § 3.6. The jet is placed coaxially
to the diaphragms due to two perpendicular micrometric screws acting horizontally.
The whole system is axially symmetric, approximately. We shall also discuss the
consequences of this fact in § 3.6. The device has the advantage of being retractable
and easily placeable close to the jet.

3.2. Setup

We now turn to the remaining experimental setup (see figure 3b). First, we identify a
hydropneumatic part responsible for the formation of the jet and the control of its
velocity. The liquid comes from the bottom of a pressurized reservoir, flushes through
a filter and continues towards the ejection head. A pressure regulator guarantees that
the pressure of the air entering the bottom of the reservoir is constant (pressurized
Mariotte bottle). Thus the velocity at the exit is constant during all the experiment,
provided the ejection head does not move vertically. Notice that using an air inlet at
the top of the reservoir, as in most experiments previously mentioned, would make
both the pressure at the bottom and the jet velocity diminish as the liquid level lowers.

The ejection head is cylindrical, with a 236 μm in diameter circular nozzle made
in a 100 μm thick stainless-steel sheet. This configuration ensures that the relaxation
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length is short (less than 1 mm) after which the radial profile of velocity becomes flat
(Scriven & Pigford 1959).

Verticality and positioning of the jet are achieved by appropriate mechanical
actuators that supply the required degrees of freedom, linked to the ejection head.
The precision in the vertical displacement is 1 μm due to a motorized translation
stage.

The experimental setup is completed with two optical systems, distributed along two
perpendicular horizontal optical axes. One of them gives a stroboscopic visualization
of the jet. The other one implements the shadow-width technique. Here we present
the basics of both.

Stroboscopic visualization consists of a CCD camera with zoom optics, aligned to
both the jet and a light emitting diode (LED). The LED is fed by a pulsed electric
signal of narrow width (2 μs), to have a good image definition, and with a period equal
to that of the physical phenomenon to be observed. In our case this period is that
of the electrostatic pressure that stimulates the jet, i.e. half the period of the voltage
signal applied to the electrode. We take advantage of the Testpoint application to
simultaneously construct stimulation and illumination signals, which are directed to
two output channels: the sinusoidal signal towards the amplifier and the pulsed signal
towards the LED. In this way, we bring about not only perfect synchronization, but
also a precise control on the phase shift between both signals. The consequence is that
the jet image is definite on the screen and we can study its evolution by incrementing
the phase shift. Although the minimum step in the phase shift is 2 μs with our DA
conversion board, times are measured with much higher precision. This feature is
crucial in our experiment and constitutes an improvement with respect to previous
works: it allows us to measure breakup times in addition to the usual measurement
of breakup lengths.

In the shadow technique, a halogen source shines on the jet and merely projects its
shadow, provided the liquid is opaque. The infrared part of the spectrum is previously
filtered. The beam reaches a plane-convergent low-reflectance lens that projects an
image amplified around 10 times on a narrow horizontal slit. In this way, a small
portion in the vertical direction of the amplified beam is selected. The light passing
through the slit is finally focused by a convergent lens on a photodiode. The electric
signal from the photodiode is amplified and conducted to an oscilloscope (Tektronix
TDS380). The DC component is not relevant and we drop it. From the remaining part
we can see the temporal evolution of the jet diameter at a definite vertical position.
The height of the slit (80 μm) is small compared to the diameter of the amplified
image of the jet shadow, so the measurement can be considered as local in relation
to the spatial evolution.

The shadow technique provides a much greater sensitiveness to detect small
deformations in the jet shape. In addition, the acquisition of these data benefits from
the capabilities of the oscilloscope for average calculations, which reduces the effect
of hydrodynamic noise. This sensitiveness is crucial to the method because the very
first stages, where the linear approximation is valid, are accessible to measurement.
To this respect, our stroboscopic visualization has not enough resolution to compete
with the shadow technique in analysing very small changes on the jet shape, although
it could be improved with a greater optical magnification (Kowalewski 1996).

Both techniques are complementary: stroboscopy displays the spatial evolution at
a fixed selectable time; shadow technique displays on the oscilloscope the temporal
evolution at a fixed selectable position. They can be used simultaneously, as they are
set in independent optical axes. In this way we can design measurement strategies
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that benefit from the two techniques. An example is the precise measurement of the
jet velocity that we report in the next subsection.

3.3. Measurements of the velocity and radius of the jet

Both the radius and the velocity of the jet slightly depend on the vertical position.
With constant flow rate Q, their values are related through the mass preservation,
which yields

Q = πR2(z) v(z)

for the basic flow. This is why we consider their measurements together.
Two main agents may modify the velocity at each position in a jet issuing

vertically: the surrounding gas and gravity. Gravity tends to increase the flow velocity.
Conversely, the drag of the surrounding gas tends to reduce the velocity and makes its
profile non-uniform. These effects must be estimated for our experimental conditions
in order to assess the measurement of the velocity at different stages. Concerning a
possible acceleration of the jet, the effect of the surrounding air is negligible since
the dynamic viscosity of the gas is much less than that of the liquid and the Weber
number is low (Gordillo & Pérez-Saborid 2005). Now considering the influence of
gravity, for a typical velocity of 5.3 m s−1 the breakup length Lb is about 2 cm, which
yields a relative increase �v/v � gLb/v

2 of 0.7 % (0.9 % for v = 4 m s−1), where g is
the gravitational acceleration. According to (3.3), the corresponding relative reduction
in radius is half of the preceding percentage. In any measurement of velocity and
radius we must have in mind the existence of these variations.

In addition, we must pay attention to the consequences of moving the ejection
head when visualizing different portions of the jet. Recall that, for practical reasons,
the two optical axes must be fixed in the experimental setup: the jet as a whole is
easier to be displaced. Every measurement (velocity and growth rates) requires vertical
motions, as we shall see later. If the ejection head changes the vertical position, the
jet velocity at the exit will change, according to Bernoulli’s equation including gravity
effects. Assuming that viscous dissipation along the hydraulic circuit is small and
virtually unchanged after the motion of the ejection head, the relative reduction in
the jet velocity at the exit ve is estimated by �v/ve � g�z/v2

e , with �z the increase
in the vertical position. This estimation is accurate provided the relative variation
in the velocity is small. With the same condition, it is also true that the radius of
the jet at the exit is fixed (Gavis & Modan 1967). According to (3.3), we thus have
relative changes in the flow rate equal to those of the velocity at the exit. We have
experimentally checked these changes by measuring flow rates at different positions
of the ejection head and they are in excellent agreement with the expected values.

By combining the two effects described above we conclude that, as we move the
position of the ejection head, the velocity at each absolute vertical position remains
the same; conversely, the corresponding radius changes by virtue of the change in the
flow rate. However, when regarded from the reference system of the ejection head,
the radius is constant at each position but the velocity is not.

As we see, the measurement of the velocity and radius must be carefully interpreted
in order to avoid systematic errors. More precisely, it is important to know at which
vertical position we are making the measurement and how much we have moved the
ejection head. In terms of error analysis, an inaccuracy in R propagates into the two
parameters being the goal of our experiments: the non-dimensional spatial growth
rate KImR and the non-dimensional wavenumber KReR. In the latter parameter, the
velocity is indirectly involved, as it determines the spatial wavelength λs and we
have KRe = 2π/λs . The same preventions discussed for the velocity apply to λs . The
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Figure 4. Breakup process described by three consecutive images, from top to bottom,
separated 2 μs in time, among which the central one corresponds to the first detachment
of a drop. The lapse between the images is the temporal resolution in the determination of the
breakup time.

Ohnesorge number C = μ(ργR)−1/2 and the Weber number We = ρRv2/γ are also
affected, but their influence on the real and imaginary parts of K , predicted by the
theoretical dispersion relation, is by far less significant when C is small and We is
large.

We now describe the experimental procedures and results for the measurements of
the velocity and radius.

3.3.1. Velocity

In order to measure the velocity of the jet, most previous works have assumed that
the spatial wavelength λs is equivalent to the temporal wavelength λt ≡ 2πv/ω. This
is also our approach, but we have been careful to avoid systematic errors. First of all,
this equivalence is not accurate enough in our context of spatial instability (Keller
et al. 1973), except for kR � 0.7 (see figure 1). Accordingly, we select the frequency
ω approximately accomplishing this condition by looking for perturbations giving
the shortest breakup length, as the maximum of the dispersion relation is also near
kR � 0.7. Then we face the problem of measuring the wavelength on stroboscopic
images.

The distance between consecutive main drops is more easily measured than the
wavelength in the unbroken part of the flow. However, the drop velocity so obtained
does not agree with the jet velocity in general (Dressler 1998). Only if We � 1,
both velocities are very similar; their discrepancy can lead to misinterpretations of
experimental data (Kalaaji et al. 2003; Attané 2006; González & Garcı́a 2006).

Instead of distances between drops, we directly measure the wavelength of the
perturbations in the unbroken part of the flow, by combining both the stroboscopic
and the shadow techniques. To this end, we fix the phase shift between the stimulation
signal and the LED signal (say zero, for instance). We then adjust the voltage
amplitude until visualizing a first breakup on the computer screen (see figure 4).
Progressively decreasing the voltage, we visualize the next breakup downstream. For
our small stimulation amplitude, the two images are virtually indistinguishable: the
only difference is an additional wavelength at the beginning of the stimulated part of
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the jet for the lower-voltage case. Consequently, the difference of breakup lengths gives
us the wavelength close to the stimulation electrode, even though the reference points
are actually taken in the breakup region. With the only support of the stroboscopic
technique, it could be measured as the displacement of the jet necessary to visualize
both breakups at the same position on the screen. However, we have found the
shadow technique both more precise and quick. Through comparing the stimulation
signal with the LED signal, we can fix the breakup position with a precision of 1 μm,
typically. As the wavelength is of the order of 1 mm, we have a relative error of 0.1 %.
The precision is further increased by measuring the displacement corresponding to
four or five wavelengths, which means a vertical motion of the ejection head smaller
than 4 mm. This source of error is negligible when compared to those from velocity
fluctuations and the above discussed gravity effects. In this way, the jet velocity is
measured within a relative error of 0.2 %.

We have assumed that the periodic quasi-electrostatic force essentially constitutes
a perturbation on the velocity at a given axial position, extensive to its whole cross-
section. To this respect, it is important to deal with a sufficiently conducting liquid
in order to avoid tangential stresses at the surface that would induce a non-uniform
velocity profile.

The velocities actually measured in our experiments have ranged between 5.25 and
5.39 m s−1 for the experiments with ink, and values very close to 5.00, 5.96 and
7.97 m s−1 for the experiments with the aqueous solution of NaNO3. These values are
assigned to the region just after the stimulation.

3.3.2. Radius

In order to measure the jet radius, we initially explored a photometric technique
consisting in an adaption of the shadow technique described in § 3.2 (Xing et al.
1996). Finally, the mass flow rate, together with the knowledge of the velocity, has
given us the most precise measurement of the jet radius. The only disadvantage is
being an indirect method, which makes it to inherit eventual errors in density, mass
flow rate or velocity measurements. However, these three parameters are determined
with very good precision in our case. Concerning the mass flow rate Q, we can reduce
its error by increasing the time during which the liquid is collected until the error
in Q is dominated by the error in ρ. In conclusion, the radius is obtained from
R =(Q/πv)1/2. The value is local and corresponds to the same position where the
velocity is measured, i.e. close to the stimulation electrode. In any case, the changes
in radius along the whole unbroken part of the jet have been previously estimated to
be lower than 0.4 %. If we restrict ourselves to the linear part of the jet evolution, the
variations are further limited.

The radii measured for the jet in the region of interest have been 108.5–108.9 μm
for the experiments with ink and 108.3–109.0, 107.5–108.0 and 106.1–106.4 μm,
corresponding to the three reported velocities used with the second liquid. In all
cases, they give diameters smaller than that of the nozzle.

3.4. Measurement of fluid properties

We have used two different liquids in the experiments: ink and an aqueous solution
of NaNO3. The ink was mainly composed by deionized water and n-propanol to
which a dye, containing a small amount of surfactant, is added. Evaporation during
the successive runs of the experiment may change the composition. However, the
mixture does not varied its physical properties very appreciably. In any case, periodic
measurements have been done to have recent values of each property in a range of
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temperatures which include the usual operating conditions of the experiment. The
data were taken in the range 24.8 ◦C–27.8 ◦C.

The aqueous solution of NaNO3 was elaborated with a 0.3 % concentration in the
weight. The range of temperatures in this case was 20.9 ◦C–23.3 ◦C.

3.4.1. Density, viscosity and conductivity

Density was measured with five significant figures with the help of a Paar density
metre DMA48. This precision is important in order to minimize errors in the
determination of the radius from the flow rate. The density of the ink at the mean
working temperature of 26.3 ◦C was ρ = 1030.6 kg m−3 and had a maximum variation
of ±0.5 kg m−3 due to changes in temperature. For the aqueous solution, the density
was extracted from tables (Washburn 2003). Owing to its relevance, we successfully
checked those tabulated values against our own measurements. At 22.1 ◦C we had
ρ = 999.7 kg m−3 with variations of ±0.3 kg m−3 due to changes in temperature.

The dynamic viscosity of the ink was measured using the rotating-cylinder technique
with a Brookfield digital viscometer DV-II+. The corresponding value for the mean
working temperature was μ = 1.64 × 10−3 kg m−1 s−1, with maximum variations of
±0.06 × 10−3 kg m−1 s−1 due to changes in temperature. In the case of the aqueous
solution, the mentioned tables give μ = 0.95 × 10−3 kg m−1 s−1 with variations of
±0.03 × 10−3 kg m−1 s−1.

Finally, we measured the electrical conductivity of both liquids with a WTW
conductivity metre LF3000, giving 1.06 S m−1 for the ink and 0.41 S m−1 for the aque-
ous solution.

3.4.2. Surface tension

Like density and viscosity, the surface tension γ of the aqueous solution is virtually
that of pure water, owing to its low concentration (Washburn 2003). Measurements
taken in our laboratory confirm this point and the static behaviour of this physical
property. A typical value is γ = 72.5 mNm−1 at 22 ◦C.

Contrarily, the determination of the surface tension of the ink requires some care.
It is well known that the properties of fresh interfaces can be very different to those
of the old ones, due to the influx of active substances dissolved in the bulk (Ronay
1978a). For our ink, the static values of γ is typically 35 mNm−1, as measured with
a tensiometre through the Wilhelmy plate method, but if the surfactants are carefully
removed, its value rises to an upper limit of 50.9 mNm−1. None of these values are
acceptable.

The dynamic value for the surface tension should be adopted, instead of the static
one, if the surface is assumed to be recent. In our case, the time of flight of the
fluid particles are typically 4 ms (breakup time), to be compared to the characteristic
time of influx of these molecules. As we could not know this last characteristic
time, we decided to deduce the surface tension from another independent experience
happening in the same time scale: we have produced isolated drops by means of pulsed
EHD stimulation and studied their vibration frequency by stroboscopic visualization.
This procedure was already used by Ronay (1978b) and Barbet (1997), but under
the assumption of a linear behaviour of the drops. However, the vibration is usually
nonlinear, so we have applied the numerical findings of Basaran (1992), which extends
to the nonlinear regime the linear studies of Rayleigh (1879) for inviscid liquids and
those of Lamb (1932) and Chandrasekhar (1961) for viscous liquids.

A voltage stimulation in the form of a square pulse (intermittent stimulation)
leads to the production of one isolated main drop in the middle of the unbroken flow
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Figure 5. Five instants in the evolution of a jet subjected to intermittent EHD stimulation
showing the region where drops have detached from the continuous flow. The main drop
oscillates symmetrically with respect to the equatorial plane. The sequence proves that the
satellites move away from the main drop.

(Hrdina & Crowley 1989). A train of pulses separated enough to produce independent
drops allows us to visualize stroboscopically the isolated drop. Figure 5 presents a
sequence of images showing the evolution of a detached main drop and its associated
satellites. From it, we can observe that the satellites do not tend to merge with the
main drop. This makes this generation technique very suitable for the study of isolated
drops.

The phase shift between stimulation and visualization signals is controlled to
analyse the drop-shape evolution with a time resolution of 2 μs. The sequence of
images is digitized and processed to determine the shapes. The detachment of the
main drop takes place almost simultaneously at both sides and the drop has an
initial shape very deformed but almost symmetric with respect to a plane transverse
to the flow. Volume and main axes are determined from the recorded shapes with
high precision. A typical evolution of the ratio of polar to equatorial axes a/b is
also shown in figure 6, where we can clearly observe the drop oscillation and the
progressive relaxation to the spherical shape due to viscous dissipation.

We have compared oscillation periods obtained from these drop-evolution essays
with numerical data from the work of Basaran (1992). In his figure 16, he plotted
the change of the oscillation frequency relative to the linear-analysis prediction, for
capillary Reynolds numbers Re = 10 and 100 (here, Re = (Rdγρ)1/2/μ and Rd is the
drop radius). In our experiment Re =67.4, close enough to Re = 100 so as to take
advantage of Basaran’s data; even more so if we realize from the linear analysis the
negligible effect of the viscosity. Another issue to be carefully considered to admit a
direct comparison is the initial combination of modes in the numerical simulation.
In view of the axial symmetry of the drop, the general description of a deformation
reduces to

r(θ) =

∞∑
n=0

CnPn(cos θ), (3.1)
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Figure 6. Ratio of polar to equatorial axes as a function of time in a drop detached from the
main stream by means of an EHD pulse. Two complete oscillations are included. The shapes
at the top of the figure are digitized images of the drop at selected times.

t (μs) C0 C1 C2 C3 C4 C5 C6 C7 C8

850 146.5 −0.4686 61.04 1.5560 8.242 0.6583 −0.8070 −0.0161 0.0637
1800 147.6 −0.1943 53.32 0.7557 4.924 0.3436 −0.9448 0.0238 −0.1378
2800 148.2 −0.0506 44.53 0.2297 4.309 0.0913 −0.5033 −0.0487 −0.1241

Table 1. First nine coefficients of the Legendre polynomials describing the shape of the isolated
drop, assumed as axisymmetric, used in the determination of the dynamic surface tension of
the ink. Three shapes, corresponding to the three maxima in figure 6, have been analysed.

where, as usual, Pn(x) are the Legendre polynomials and θ is the polar angle in
spherical coordinates. Basaran restricted his simulation to the first two even spherical
modes. In our case, a modal decomposition obtained from the shape of the drops
(see table 1) clearly shows that the amplitudes of modes higher than the fourth are
negligible. It is also obvious that the odd modes play almost no role, as expected
from our highly symmetric EHD stimulation (see figure 5). The presence of all these
additional modes does not invalidate the comparison because their amplitudes are
small enough to expect a negligible interaction with those selected by Basaran in his
initial conditions. We have eliminated these modes to recalculate each drop shape
and the corresponding ratio a/b. This procedure gives a representation of the drop
evolution that slightly modifies that of figure 6. Next, we have adjusted a parabola
to the set of data close to each new maximum in order to determine the oscillation
periods. The comparison with Basaran’s numerical simulation is then more adequate.
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The surface tension obtained in this way is 52.4 mNm−1 from the first oscillation
and 53.0 mNm−1 from the second, values reasonably close to the static value once the
surfactants are removed. We interpret that, for our low concentrations of surfactants,
the dynamic surface tension does not significantly vary during the whole evolution of
the jet.

3.5. Measurements of the growth rate

We have measured the spatial growth rate KIm in two independent ways: the breakup
method, based on global features of the flow, and the amplitude-evolution method,
giving nearly local values for KIm.

3.5.1. Breakup method

The breakup method is based on the measurement of the breakup time or breakup
length of the liquid jet for different initial amplitudes of the induced disturbance.
The induced disturbance is weak. Therefore, the early evolution of the liquid jet after
the stimulation is expected to be well described by the normal-mode linear analysis.
As shown by Garcı́a & González (2008), two normal modes are initially induced by
a non-recirculating monoharmonic stimulation: a dominant mode, whose amplitude
exponentially increases with time, and a subdominant mode, decreasing with time.
Our initial conditions are mainly impulsive, since the liquid has no time to deform
during the brief time of stimulation (Garcı́a et al. 2000). Then both normal modes
have similar initial amplitudes. Nevertheless, after an initial transient whose duration
depends on the growth rates of both modes, only the dominant mode will remain, the
one responsible for the growth of the deformation towards breakup. It is the initial
amplitude of the dominant mode fd0 what we need in order to estimate the breakup
length, since the subdominant mode is supposed to vanish much before the breakup.

The initial amplitude of deformation of the dominant mode, being small, is expected
to be proportional to the outwards electrical pressure (1/2)ε0E

2
S , where ε0 is the

vacuum permittivity and ES is the modulus of the electric field in the vicinity of the
jet surface. Since ES is proportional to the amplitude of the applied voltage V0, the
initial amplitude of the dominant mode will be given by

fd0 = AV 2
0 , (3.2)

where A is a coefficient that may depend on the stimulation frequency.
If we substitute (3.2) into (2.2) with m =0 we arrive at

f (z, t) = AV 2
0 exp(KImz) cos(ωt − KRez), (3.3)

where the stimulation angular frequency ω is twice the angular frequency of the
stimulation voltage, owing to the quadratic relation between voltage and electrostatic
pressure. If the whole evolution of the perturbation was linear, the breakup length Lb

would fulfil

AV 2
0 exp(KImLb) = R. (3.4)

Although this is a simplification, it will serve us for accurately measuring the growth
rate, as we discuss next. Taking logarithms in the previous expression, we arrive at

Lb = a − b lnV0, with a =
1

2KIm

ln(R/A), b =
1

2KIm

. (3.5)

This correlation suggests measuring the breakup length for different imposed voltage
amplitudes. Note that neither the unknown parameter A nor absolute values of
breakup lengths are necessary to obtain the spatial growth rate KIm, because it is
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extracted from the slope b. Measurements of Lb relative to an arbitrary reference are
enough.

Two major criticisms can be done to the use of (3.4): (i) the definition is based
on (2.2), which does not take into account the transient previous to the extinction of
the subdominant mode (Garcı́a & González 2008) and (ii) the evolution of the jet is
not linear at the breakup. For the sake of argument, we consider three zones in the
unbroken flow, namely the initial linear transient part, with length denoted by Llt ;
the central linear purely exponential part, with length Lle and the final nonlinear part,
with length Lnl . Then, we may write Lb =Llt + Lle + Lnl . Concerning each criticism
separately, we state the hypothesis that both (i) the transient length Llt and (ii) the
nonlinear length Lnl are fixed for a given stimulation frequency. In this way, they do
not affect the value of the parameter b defined in (3.5). The sole term dependent on
the stimulation voltage is Lle.

These two hypothesis are crucial in the validation of the method of measurement.
About the linear transient, Garcı́a & González (2008) have proved that the duration
of the transient depends on the growth rates of the dominant and subdominant
modes, but not on any initial amplitude. There, the duration of the transient is
defined as the time after which the instantaneous growth rate approaches the growth
rate of the dominant mode within a prescribed maximum deviation. Simple formulae
are available in that reference. Llt is the duration of the transient multiplied by
the jet velocity. This length accurately measures the distance from the stimulation
point necessary for the subdominant mode to extinguish. We can conclude that the
linear-transient length Llt does not change when the stimulation amplitude varies.

Concerning the nonlinear evolution, we have verified for the ink experiments that
the stroboscopic images taken at the breakup region for different stimulation strengths
are virtually identical, as already mentioned in § 3.3.1. We shall later see in the same
subsection that this behaviour is typical of low-amplitude stimulation, which is not
always the case.

In practice, with our experimental setup, we can measure both the breakup length
Lb and the breakup time tb, i.e. the time spent by the jet since it is disturbed upstream
until the first detachment of a drop downstream. We have preferred to measure tb
instead of Lb because it is both more precise and more quick. However, we must
have in mind that the instability has a spatial nature. Therefore, in order to derive
an expression alternative to (3.5) in terms of tb, we should not use the evolution
of the perturbation in the temporal approach (2.1) instead of its spatial approach
counterpart (2.2). Rather we can employ Lb =(ω/KRe)tb, which is strictly valid because
the breakup is a consequence of the propagation of capillary waves. From this and
(3.5) we find

tb = c − d lnV0, c =
KRe

2ωKIm

ln(R/A), d =
KRe

2ωKIm

. (3.6)

As we have adopted ΩIm � vKIm in § 2 as the relevant temporal quantity, from an
experimentally obtained slope d we deduce ΩIm � KRev/(2ωd). Figure 1 shows the
factor ω/(KRev) for different Weber numbers. For instance, in the experiments with
ink (We � 60), this factor implies a change not greater than 0.85 % to the value given
by the slope, and even almost null in the region kR � 0.7.

In order to experimentally determine ΩIm for a given wavenumber, we have to
measure a series of breakup times for different voltage amplitudes, as the four series
with ink plotted in figure 7. For each V0, we change the temporal phase between
the stimulation signal and the stroboscopic illumination signal until visualizing the
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Figure 7. Change in breakup time relative to an arbitrary reference, as a function of the
logarithm of the applied voltage amplitude in volts. Four different stimulation periods are
shown, all exhibiting excellent linearity: kR = 0.255 (+), kR =0.320 (�), kR = 0.400 (�),
kR = 0.500 (�). The spatial growth rates are obtained from the slopes.

breakup on the computer screen. That phase change gives us tb(V0). Finally, we fit (3.6)
to each experimental series of data. The temporal growth rate is inversely proportional
to the slope of the linear fit. Note that we do not need the flow velocity to measure
the temporal growth rate, in contrast to experiments that measured breakup lengths
instead of breakup times (Goedde & Yuen 1970; Wetsel 1980; Kalaaji et al. 2003).
As shown in figure 7, the correlation is excellent in all the series with ink. Typically
we reach a Pearson coefficient of 0.99995, always over 0.9990, and even as better as
0.999999 for some essays with wavenumbers kR � 0.7.

The linearity experimentally found is consistent with the hypothesis of Llt + Lnl

constant. The results reported in § 4 have been obtained in this way.
We finally come back to the question of the invariance of the breakup region

with the initial conditions. The experiments with the aqueous solution have shown
slightly worse adjustments of breakup-time data to linear regressions than those
with ink. Systematic deviations are detected for the highest applied voltages. This
same behaviour, although much more marked, is found in the breakup-time data
presented in Chaudhary & Maxworthy (1980). This work is worth to be analysed in
detail, as it constitutes a very careful and documented application of the breakup
technique. In figure 8, we represent their breakup time versus the voltage applied
to the piezoelectric device, in logarithmic scale. It is assumed that the amplitude
of the disturbance is proportional to the applied voltage. Only three representative
wavenumbers are selected to discuss the effect of increasing the stimulation voltage.
Each set of data should ideally fit a straight line as in our case (figure 7). Indeed, this
is true in figure 8 for low-enough voltages. The lines come from a linear fit to the
low-voltage data. However, we clearly observe systematic deviations from the linear
fits for higher voltages. These deviations are small for k � kmax , but become more
evident as k differs from this value. For a given wavenumber, if we progressively
discard the data corresponding to higher stimulation voltages, the remaining set fits
better to a straight line. In our experiments with the aqueous solution, the stimulation
with the highest voltages is almost two orders of magnitude smaller than that in
Chaudhary–Maxworthy’s experiments, but strong enough to observe slight systematic
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Figure 8. Non-dimensional breakup time tb/tc versus the stimulation voltage amplitude
Vr.m.s. applied to the piezoelectric device used in Chaudhary & Maxworthy (1980). Three
representative wavenumbers have been selected from their original data to show different
behaviours relative to linear fits: kR = 0.31 (+), kR = 0.74 (�), kR = 0.95 (�). Each line
corresponds to a fit of the low-voltage data.

deviations. We have avoided them through discarding the high-voltage data as
described above.

3.5.2. Amplitude-evolution method

The amplitude-evolution method, contrary to the former, does not rely on any
hypothesis about the stimulation mechanism. The spatial evolution of the jet is
analysed for fixed stimulation parameters. More precisely, the shadow technique
described in § 3.2 gives a periodic voltage signal whose instantaneous value is propor-
tional to the diameter at any specific stage z in the flow. As we move downstream, the
maximum axisymmetric surface deformation fmax (z) exponentially increases according
to (2.2)

fmax (z) = f0 exp(KIm z) ⇒ V (z) = Vref exp[KIm (z − zref )], (3.7)

where V (z) is the amplitude of the AC component of the voltage recorded by the
photodiode, Vref is the lowest of these amplitudes in each data series and zref is the
corresponding position at which Vref is measured.

In the processing of the original data, a primary task is to select those data belonging
to the purely exponential-growth part of the spatial evolution. Linear transients have
been avoided following the criteria developed in Garcı́a & González (2008). Those
points corresponding to the nonlinear evolution have been discarded as well through
the heuristic criterion of rejecting deformations with amplitudes greater than 10 % of
the unperturbed jet radius. A theoretical analysis of systematic errors associated with
this practice has not been carried out yet.

The points in figure 9 show relative voltages in logarithmic scale against the position
z, obtained for perturbations with different values of kR. In accordance with (3.7),
they basically follow a linear tendency in this plot. However, systematic sinusoidal
deviations, usually small, are always present. An extreme case is kR = 0.151 (the
lowest selected wavenumber). This phenomenon is not new: in figure 6 of the work of



198 H. González and F. J. Garćıa
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Figure 9. Amplitude of voltage recorded by the photodiode used in the amplitude-evolution
technique, as a function of the axial position in the jet. The voltage is represented in logarithmic
scale and in relative terms, using the lowest voltage of each series as the reference. Each
connected set of data correspond to a stimulation frequency whose associated non-dimensional
wavenumber is shown. The curves are the results of nonlinear fits described in the text.

Goedde & Yuen (1970), we observe the same behaviour. Also, Dr Atten has privately
informed the authors that he has observed strong sinusoidal patterns in a conducting
jet in a similar experiment with EHD stimulation, this time using a laterally placed
electrode. With piezoelectric stimulation, Wetsel (1980) found a similar deviation.

Wetsel, in that work, gave a theoretical explanation for the sinusoidal deviations,
based in the superposition of non-axisymmetric modes of azimuthal index m �= 0
over the main axisymmetric deformation (m = 0). He related the presence of these
modes to deviations of the exit-orifice shape from a perfect circumference. We do
not enter in the validity of this guess but merely point out that other sources
of non-axisymmetric modes are possible. For instance, if the ejection chamber is
laterally fed, the velocity field at the exit is expected to have an axial component
with an m = 2 mode of non-negligible amplitude. In our case, the EHD stimulation
is responsible for the generation of non-axisymmetric deformations because neither
the shape of the stimulating electrodes nor the electrode-jet centring are perfect. We
have experimentally checked this source by deliberately placing the jet off-centre: a
sinusoidal pattern appears or, if already existing, becomes more pronounced.

Wetsel claimed that, downstream, the deformation originated at the orifice evolves
with a temporal angular frequency ωm that can be estimated with the temporal
approach of Rayleigh (1879) through

ωm|k=0 =
√

m(m2 − 1)/tc, (3.8)

valid for an infinite column of inviscid liquid with k = 0. The result is a sinusoidal
pattern in the axial coordinate whose wavelength is λm =2πv/ωm. Wetsel’s measured
wavelength for the mode m = 2 agreed well with this formula. However, Wetsel’s
theoretical derivation, based on a temporal analysis, does not correctly explain either
why the time-dependent deformations are detected by the photodiode or which is
the role of the stimulation frequency in the generation of this m = 2 perturbation. A
mere deformation of the orifice shape without stimulation should result in the same
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spatial pattern, observed for instance in any vibrating-jet technique of measurement
of the dynamic surface tension (Bohr 1909; Bechtel et al. 2002). However, being static,
that pattern could not be detected in the spectral analysis carried out by Wetsel on
his experimental data. This difficulty could be circumvented by considering that the
amplitude of the radial velocity at the orifice had a sinusoidal temporal dependence
that advects to any position downstream, but this last assumption is artificial because
he had previously substituted t = z/v at every temporal dependence in his formula in
order to account for the spatial evolution.

We find more natural and rigorous the description of the non-axisymmetric pattern
from a spatial analysis, using the high-velocity limit developed by Keller et al.
(1973). Accordingly, for a given stimulation frequency ω, two waves with different
wavenumbers (or, equivalently, different phase velocities) propagate downstream. They
combine themselves to give a spatial pattern analogous to the acoustic phenomenon of
beats occurring when two signals of unequal frequencies are simultaneously emitted.
In our case, we have to think of these beats to happen in space instead of in time.

The two wavenumbers associated with the stimulation frequency ω can be expressed
as

k+
m � k + km; k−

m � k − km, (3.9)

where k = ω/v is the advective propagation of the stimulation frequency ω and
km = ωm(k)/v is the advective propagation of the frequency ωm(k), calculated for the
mode m and wavenumber k from Rayleigh’s temporal analysis. The signs plus and
minus should be interpreted, respectively, as downward and upward propagation of
the perturbations in a reference frame moving with the jet. These waves do not
separately give a spatial pattern, but their combination does, as we demonstrate next.
The general case is just a combination of both modes, each with different amplitude,
say A+ and A−, respectively, leading to a superposition of two waves, one with
spatially modulated amplitude and the other with spatially constant amplitude:

Re{A+ exp[i(ωt − k+
mz)] + A− exp[i(ωt − k−

mz)]}
= 2 cos(km z)Re{A− exp[i(ωt − kz)]} + Re{(A+ − A−) exp[i(ωt − k+

mz)]}. (3.10)

The spatially modulated wave is detected by a photodiode as a signal of frequency ω

at every flow stage, but its amplitude is periodic in space with wavenumber km. The
other term is detected as a uniform-amplitude signal.

Besides from its origin, the presence of non-axisymmetric deformations is
quantitatively determined by adjusting the experimental data to a superposition
of exponentials of the axial position; the sinusoidal pattern should be related to an
exponential term with complex exponent. The matrix pencil method is best suited to
achieve this fit (Sarkar & Pereira 1995), due to its linear nature; instead of nonlinear
schemes, like the Levenberg–Marquardt algorithm, because the latter needs an initial
guess which is often difficult to choose. However, the nonlinear algorithm has also
been employed for testing purposes and for having an accidental-error estimate of
the fit parameters. The adjusted curves in figure 9 have been generated by the matrix
pencil method.

Note that the spatial analysis predicts a wavenumber related with a different
natural frequency of the Rayleigh (temporal) model than that claimed by Wetsel
(with k = 0). However, the difference is slight, as we may observe in figure 10, where
a plot of the function ω2(k) is presented and compared with data extracted from the
sum-of-exponential fit. We recall that we have used the viscous temporal dispersion
relation to evaluate km, although the change with respect to the inviscid curve is not
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Figure 10. Non-dimensional frequency for the asymmetric m= 2 mode extracted from the
data obtained by the amplitude-evolution technique, as a function of the selected wavenumber.
The spatial periodicity apparent in figure 9 is related to the Rayleigh temporal analysis for
that mode (see text) and the solid curve shows the theoretical prediction. The dashed line
extends the value ω2|k = 0 tc to any value of k, as proposed by Wetsel (1980).

relevant in this case. In this figure, for kR < 0.5, the data points are close to our
proposed curve. However, the reader may find suspicious the better agreement of the
experimental points having kR > 0.5 with the particular value of the curve at k =0,
as calculated by Wetsel. To this respect we must stress the fact that data with higher
k are subject to higher accidental errors. The reason is apparent from figure 9, where
we can observe the importance of non-axisymmetric modes for low k, in contrast to
his residual character for higher k. In any case, there is no doubt about the superiority
of a spatial model from the theoretical point of view.

Another issue worth to mention about the parameters obtained by the matrix pencil
method is the positive character of the real part of the exponents, corresponding to
growing perturbations. It is well known that the Rayleigh theory predicts damped
oscillations for these modes. However, as their amplitudes are small with respect to the
amplitude of the axisymmetric mode, we find this growing behaviour non-surprising,
typical of slave modes that receive energy from the dominant one (Manneville 1990).

Statistical errors associated to the evaluation of ΩIm are even smaller than those
obtained through the breakup method. As in it, growth rates corresponding to either
low wavenumbers or close to kR = 1 are the most difficult to obtain, due to the short
range of data verifying the double restriction of being transient free and having low
amplitude.

3.6. Role of the electrical shielding in stimulation

In previous experiments, EHD stimulation without electrical shielding gave us
values of the growth rates systematically higher than expected. The reason was
the destabilizing effect of a radial electric field acting on the whole jet, as shown
by Melcher (1963) for a DC field applied on an inviscid fluid, by Saville (1971) for
a viscous fluid and by González, Garcı́a & Castellanos (2003) for a viscous fluid
in an AC field. Initially, the configuration of the stimulation electrode suggested a
local effect near the jet exit that should become negligible downstream. However, an
estimate of the electric number χ = ε0E

2
SR/γ (with ES the electric field on the jet
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Figure 11. Axial distribution of electric field at the jet surface with (dashed line) and without
(solid line) shielding electrode, using finite elements in the axisymmetric region represented
in the attached figure. Dimensions and relative positions of both electrodes, sketched inside
the main graph, are as in the experiment. The dashed line in the sketch is the closure for the
computation, where we have imposed V =0 as boundary condition.

surface and ε0 the vacuum permittivity), which gives the relative importance of the
electrostatic pressure versus the capillary-pressure jump, indicates that the influence
of the electric field is not completely negligible. Indeed, the electric field on the jet
computed with the help of a finite-element code gives the results shown in figure 11.
From these results, the mean electric number acting on a jet 2 cm long is χ � 0.03 V 2

0 ,
where V0 is measured in kilovolts, and typically reaches values as high as 1.3 kV.
These values might be responsible for deviations in the growth rate values greater than
1 %. The effect is certainly not very important but, for a very precise determination
of the growth rate, shielding is necessary. The results reported by Goedde & Yuen
(1970) might be affected by the stimulation field, as the authors did not mention any
shielding device in the description of their experimental setup.

Another consequence of the absence of shielding is a change in velocity due to a
non-uniform electric pressure acting on the whole jet. As a matter of fact, after the
passage through the stimulation electrode, the fluid particles are decelerated by the
progressive reduction of the outward force exerted by the electrostatic pressure. An
estimate of this acceleration is

dv

dt
� − 1

ρ

dpinner

dz
; pinner (z) = pouter +

γ

R
− pE(z). (3.11)

The outer pressure and the capillary-pressure jump are essentially constant, while the
electrostatic pressure is pE = ε0ES(z)

2/2 and ES(z) is depicted in figure 11. Integration
of (3.11) between two arbitrary flow stages, z1 and z2, taking into account the
approximate relation dt � dz/v, yields a change in velocity given by

v(z2) − v(z1) � − 1

ρ

∫ z2

z1

dpE

dz

dz

v
= −ε0[ES(z2)

2 − ES(z1)
2]

2ρv
. (3.12)

For a stimulation r.m.s. voltage of some 1000 V, using the field distribution of figure 11,
the relative change in velocity would be of the order of 1%. If the determination of
the wavelength was based on the stimulation frequency and on the jet velocity, the
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small error in the estimate of the wavenumber would result in an important error
in the assigned growth rate for the region KRe � 1. This was not the case in the
experiment of Goedde & Yuen (1970), who directly measured the wavelength from
photographs.

Therefore, the shielding guarantees that neither velocity, radius nor growth rate are
affected by the electric stimulation.

3.7. Summary of the experimental procedure

Let us summarize the procedure carried out in a typical experimental essay. The
liquid properties are measured previous to running the essays. For each of these,
the pressure of the reservoir is fixed. We measure the jet velocity as described in
§ 3.3.1 by imposing a stimulation frequency leading to the shortest breakup length.
Next we measure the flow rate Q and deduce the jet radius from (3.3). These steps
are previous to the measurement of a series of growth rates, although the value
of the velocity is often checked during the series. In each individual series we fix
a stimulation frequency, measure the resulting wavelength and calculate the non-
dimensional wavenumber; next, we find the corresponding growth rate by one among
the two methods described in § 3.5, i.e. either we build a table of breakup times
versus imposed voltage amplitudes (breakup method) or we fix the voltage and build
a table of amplitudes of the oscilloscope signal versus axial positions (amplitude
evolution method). From each table of data we will extract one experimental value
of growth rate, corresponding to the fixed stimulation frequency. This gives one
single experimental point to be compared with the theoretical dispersion relation.
The procedure is repeated for different stimulation frequencies, yielding a set of
experimental points, until the reservoir is empty. After recycling, we continue with
the same pressure in the reservoir, or change it if we want to explore another jet
velocity. In all cases, velocity and flow rate are measured again. The points shown in
figures 12 and 14 are obtained in this way.

4. Results
4.1. Ink jets

We have measured the growth rate of ink jets with velocities close to v =5.3 m s−1

(see § 3.3.1), in a wide range of wavenumbers through both the breakup and the
amplitude-evolution methods. Those results are plotted in figure 12, together with
the theoretical predictions. In this section, we describe and compare the experimental
data obtained with each method. The theoretical curves, calculated for C =0.21 and
We =59, are analysed in § 5.

The growth rates presented in figure 12 have been made non-dimensional with
the capillary time. We thus need the value of the surface tension. Since the value
from the drop-oscillation method has an incertitude greater than the dispersion of
experimental data, we have finally adopted the one from fitting our experimental data
to the appropriate theoretical dispersion relation. The choice of this theoretical model
is also discussed in § 5. The resulting value for the surface tension is γ =53.1 mNm−1.

General remarks about errors associated to growth rates obtained through the
breakup method have been given in § 3.5.1. Here we merely add, in relation to
figure 12, that statistical errors are greater as we move away from the region of
the maximum, a fact correlated to a blurring on the stroboscopic images. The sharp
images presented in figure 4 are typical of the region near kmax . The mentioned
blurring is the obvious consequence of the ubiquitous noisy perturbations: despite of
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Figure 12. Temporal growth rate versus wavenumber, both non-dimensional, obtained from
data corresponding to experiments with ink, using (a) the breakup time method (+) and (b) the
amplitude-evolution method (�). The lines correspond to theoretical predictions with (solid
line) and without (dashed line) air effect for C = 0.021 and We = 59, using the spatial analysis
and a translation to the temporal variables, as discussed in § 2.
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Figure 13. Deviations of the temporal growth rate versus wavenumber, both non-dimensional,
obtained after the best fit of the theoretical curve in the case of experiments with ink. The
symbols are the same as in figure 12 for each data set. The dashed line gives the difference
between the growth rates calculated with the Sterling–Sleicher and Rayleigh models.

their small initial amplitude, the ones with k � kmax grow faster than the stimulated
disturbance.

In figure 12 we have also represented, with a different symbol, the experimental
points obtained with the amplitude-evolution method. These points have been
obtained as described in § 3.5.2. Statistical errors in the growth rates are estimated as
a 0.2 %, which gives an idea of how small the accidental errors are.

The accuracy of each method is analysed by calculating the deviations of the data
from the theoretical curve. Figure 13 shows these deviations for both methods, each
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with the same symbols as in figure 12. In fact, we have obtained the mentioned
value of surface tension through minimizing the standard deviation in the range
0.35 <kR < 0.85, for which the possible effect of systematic errors is lower. This
procedure, separately employed for each data set, gives the same value of surface
tension within an uncertainty of 0.05 mNm−1. However, the standard deviation is
lower for the amplitude-evolution method (0.0012 against 0.0017). In both cases it is
small compared to the maximum non-dimensional growth rate (ΩIm,maxtc � 0.336).

4.2. Aqueous solution jets

Ink-jet experiments have been designed with the main purpose of characterizing and
comparing two independent techniques of measurement of growth rates. However,
their validation through comparison with the theory is done by means of the
adjustment of the surface tension of the ink. The series of experiments done with
aqueous solution provides a direct comparison of one of the measurement techniques
(the breakup-time one) against the theory, without adjustment of any parameter. As
the liquid is now transparent, the amplitude-evolution method is not suitable in this
case.

Three series of experiments, each with different jet velocity, have been carried out.
They are independently presented in figure 14. The measured velocities have been
reported in § 3.3.1, for which we find We � 37, 53 and 93, respectively. Note that the
central value among those Weber numbers is very similar to the one corresponding to
the experiments with ink We = 59). The Ohnesorge number is C � 0.011, roughly half
its value in the experiments with ink. As in figure 12, the experimental data can be
compared with the two theoretical curves. Deviations of almost all the experimental
points are less than 1 % with respect to the curve without air effect.

Careful limitation of the stimulation voltages guaranteed a linear fit of the original
data as discussed in § 3.5.1. Only the points with kR far from the maxima of the
theoretical curves required voltages significantly higher than 1000 V (which is a
circumstantial reference value, dependent on the particular experimental setup and
different when working with ink).

4.3. Strong stimulation in the breakup method

In § 3.5.1 we have pointed out the risk of handling strong-stimulation data in the
breakup method. In figure 15, following the procedure described in § 3.5.1 applied
to the data from Chaudhary & Maxworthy (1980), we have plotted three different
sets of estimates of growth rates by progressively discarding the highest stimulation
voltages. In general, the agreement with the theoretical curve (computed from the
original experimental parameters) improves as the fitting is restricted to smaller initial
voltages. Changes mainly affect the wavenumbers far from kR � 0.7.

5. Discussion
The first issue to be discussed will be the theoretical model applicable to our

experiments. In general, jets do not exactly behave as predicted by the temporal
model introduced by Rayleigh. The spatial nature of the evolution of real jets has
been considered in § 1 and its relation with the temporal model has been stated
in § 2. Specifically, we have made the connection between spatial quantities (ω,
KRe and KIm) and temporal ones (k, ΩRe and ΩIm). The selected jet velocity in
our experiments is high enough to assume small spatial effects. On one hand, we
have determined the wavenumbers from the stimulation frequencies and from the
independent measurement of the jet velocity near kR = 0.7 (see figure 1), obtaining
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Figure 14. Temporal growth rate versus wavenumber, both non-dimensional, obtained from
the breakup-time method for three series of experiments with the aqueous solution and with
different Weber numbers. The symbols and lines mean the same as in figure 12.

in this way the temporal quantity k = ω/v. On the other hand, the two methods
of measurement of growth rates give values for the quantity ΩIm according to the
definition vKIm. The curves presented in figures 12 and 13 have been computed from
the spatial dispersion relation. Figure 2 gives an estimation of errors committed when
disregarding spatial effects in our typical experimental conditions. These are lower
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Figure 15. Experimental growth rate versus wavenumber, both in non-dimensional form,
fitted from data of table 2 in Chaudhary & Maxworthy (1980) by selecting those data with
Vr.m.s. < 70 V (�), Vr.m.s. < 20 V (�) and Vr.m.s. < 4 V (+). The curve represents the dispersion
relation applicable to their experiment, where the stimulation frequency is fixed and the jet
velocity is variable. Both spatial and aerodynamic effects are taken into account (C = 0.0295,
from their value of tc; We = 19.01(kR)−2 and ρa/ρ = 1.18 × 10−3).

than 1 % except for kR very close to one, where we reach 6 %; however, the difference
is hardly observable due to the sharp descent of the dispersion curve in that region,
combined with the always present incertitude in the experimental values of kR. In
any case, the spatial dispersion curve is as easily generated as the temporal one.

Besides from the above discussed corrections, two other effects should be taken
into account: gravity effects and the action of the surrounding gas.

The effect of gravity is usually quantified through the Froude number Fr = v2/gL

(L a typical length of the system), which represents the ratio of inertial forces to
gravity forces; more interesting, its inverse is the relative variation of the velocity in a
typical length of the system. For low velocities, this relative change before breakup is
important, and so it is the change in radius by virtue of the flow rate preservation. As
velocity and radius are not uniform along the jet, neither the temporal nor the spatial
models are strictly applicable. In these conditions, the concept of growth rate is still
useful for low variations in the jet parameters, although it becomes local (Eggers
& Villermaux 2008). This local character of our measurements must make us very
cautious about where we are measuring every parameter along the jet.

In our experiments, the Froude number evaluated using the breakup length (Lb �
2 cm) is Fr � 140, so the effect of gravity on the whole jet is small. Moreover, for the
two methods of measurement of the growth rate, the involved interval of positions
has a typical length of some 6 mm, i.e. they are nearly local. The associated Froude
number is Fr � 480 and none of the complications described above ultimately affect
our measurements.

The estimation made in the preceding paragraph ensures definite values for all
quantities in a typical region of measurement, but we also must determine where
to associate each measurement and which eventual systematic errors are induced. In
§ 3.3.1 we have stated that velocity and radius are measured in the region adjacent
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to the stimulation zone. This also applies to the growth rate when obtained by the
breakup method because the procedure is the same: a progressive reduction in the
stimulation voltage that adds new portions at the beginning of the stimulated part of
the jet. As a result, velocity, radius and growth rate are measured at the same region
and the gravity effects do not induce any systematic error. On the other hand, the
amplitude-evolution method requires data obtained beyond the transient zone, so, in
general, the result does not correspond to the same region where velocity and radius
have been measured. However, both regions are not very separated and the systematic
errors are expected to be lower than 0.4 % for the velocity and half this value for the
radius. The error in the velocity has been virtually eliminated by measuring both the
growth rate and the velocity at the same absolute vertical position. This is achieved
by properly selecting the range of stimulation voltages. In this way the velocity has
the correct value, but the radius still differs, although very slightly, by virtue of the
change in the flow rate (see § 3.3.1).

Concerning the action of the surrounding air, although the basic flow is essentially
unchanged, its stability could be affected, as pointed out in § 1. For the velocities
attained in our experiments, all the effects originated by the surrounding air have
a small influence. In order to analyse this point, we present in figures 12 and 14
two curves: one including the air effect with the help of the Sterling–Sleicher model
(solid line) and the other omitting it (dashed line) that we will call Rayleigh model
although both curves come from a spatial instability analysis. The same information
as in figure 12 is given in figure 13, but magnified because we deal with differences
with respect to the Sterling–Sleicher predictions. In the region of maximum growth,
around kR = 0.7, the difference is 0.6 %. For low wavenumbers, both curves become
indistinguishable. For kR close to 1, although the growth rates predicted by each
model are different, they are actually close from an experimental point of view, owing
to the large effect of an incertitude in kR.

The sole adjusted parameter in the theoretical curves of figure 12 is the surface
tension, for which we have not a very accurate value, as we mentioned in § 4. Both
curves are weakly dependent on this parameter via the Weber and the Ohnesorge
numbers. Simultaneously, the experimental points presented in figures 12 and 13
have been made non-dimensional using the value of the surface tension that yields
the best fit. Theory and experiments present this best fit for the already mentioned
value γ = 53.1 mNm−1. A basic validation of both theoretical models comes from
the excellent agreement between any of the two curves and the experimental data
set in the whole range of tested wavenumbers. In addition, the estimated value of
surface tension using the drop-dynamics technique, described in § 3.4.2, is in the range
52.4–53.0 mNm−1, which is very close to the best fit value.

Further confidence in the methods of measurement and in the considered theoretical
models is gained regarding the results of the series of experiments with the aqueous
solution (figure 14), as in this case there is no adjustment of free parameters. The
agreement is excellent for the three considered jet velocities. In addition, we are
in similar experimental conditions as before: the range of selected Weber numbers
includes the value corresponding to the experiments with ink and although the
Ohnesorge number is different, in both cases viscous effects have small influence on
the theoretical curves. We can conclude that not only the breakup method but also the
amplitude-evolution method gives accurate estimations of growth rates as predicted
by the theoretical models.

The experiments with the aqueous solution have explored a narrower range of
values of wavenumbers than those with ink. The reason is the restriction to the
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breakup method, which is less able to deal with perturbations having low growth
rates.

The main observation regarding figures 12 and 14 is that the experimental data
distributions are confined in narrow bands. Along with the low dispersion around the
theoretical curve, our experiments improve the measurements of growth rates made
up to now. To this respect, it is clarifying the review of some previous experimental
data carried out by Kalaaji et al. (2003), comprising those of Bruce (1976), Pimbley
& Lee (1977), Cline & Anthony (1978) and Chaudhary & Maxworthy (1980); some
of them needed a reprocessing (appropriate non-dimensionalization and extraction of
the growth rate from breakup lengths) for the sake of comparison with the dispersion
relation. The work of Cline and Anthony should not be considered, strictly speaking,
as a breakup-length method, because each growth rate is deduced from a sole breakup
length, under the assumption of an ad hoc frequency-independent value of the initial
amplitude. This fact, together with other irregularities in their data processing, leads
us to discard their results. Among the remaining works in the previous list, the
one of Chaudhary and Maxworthy (figure 15) presents the lowest dispersion in the
experimental points. Even the data of Kalaaji et al. (2003) are not less dispersed. This
is to be compared with our experiments: in the case of those conducted with ink, the
points from both methods lie in a narrow band from which we may extract a ±1.2 %
maximum deviation for 0.35 <kR < 0.85 and up to ±3 % outside this range, except
for the very extreme wavenumbers. The experiments with aqueous solution have even
lower dispersion in the region of the maximum growth rate.

Beyond the coarse agreement suggested by figure 12 for the experiments with ink,
some effort to discern between the Rayleigh and the Sterling–Sleicher models can be
done regarding figure 13. However, clear conclusions are not expected to be drawn,
owing to the small differences between both models in our experimental conditions,
which are of the order of the typical dispersion of the data. Of course, we could have
adopted the Rayleigh model as the basis for the estimation of the surface tension,
instead of the Sterling–Sleicher one. In doing so, the overall dispersion of the data sets
slightly increases and, specifically, the experimental points for kR � 1 systematically
lie above the theoretical curve. For this reason we believe that these first experiments
agree better with the Sterling–Sleicher model.

The latter conclusion seems to agree with those of Kalaaji et al. (2003) and Gordillo
& Pérez-Saborid (2005), where the Sterling–Sleicher model is tested, but we recall
that these works restricted the test to modes with kR � 0.62, i.e. in the region of
the maximum growth rate. The description of how the surrounding air affects the
growth rates in the whole range of unstable wavenumbers is still unaddressed. In
Gordillo & Pérez-Saborid (2005), such a dispersion curve is not supplied because,
as the authors demonstrated, the growth rate becomes a local concept, dependent at
each axial position on the development of the boundary layer adjacent to the jet. As
a consequence, the validation of the Sterling–Sleicher model cannot be quantitative
and the results of a particular experiment depends on new parameters, such as the
breakup length. By defining an average growth factor, specific to the experiments
described in Kalaaji et al. (2003), Gordillo & Pérez-Saborid (2005) proposed a value
for the parameter β in Sterling and Sleicher’s work of 0.14, instead of the original
β = 0.175. We have taken the latter to compute the solid curve in figure 12, which is
the reference for the relative values presented in figure 13.

The conclusion extracted from experiments with ink contrasts with what we observe
in figure 14 for the experiments with the aqueous solution. For the three Weber
numbers, but especially in the case of We = 93, the experimental points are closer
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to the Rayleigh curve than to the Sterling–Sleicher’s one. The distance between the
nozzle and the set of electrodes in experiments with the aqueous solution (6 mm)
is significantly different from the one in experiments with ink (3 mm). According to
Gordillo & Pérez-Saborid (2005), the correction due to air effect is mainly generated
near the jet exit, where the boundary layer in the gas is narrow. Consequently, the
actual value of β could be lower than that used in figure 14. Summarizing, although we
expect the air effect to have some influence on the values of the growth rates, neither
there is any theoretical curve available for fine comparison with our experimental
data, nor the accuracy of the experiments in our conditions is enough to discern such
a small effect.

Once the accuracy of the results has been demonstrated, the next task is to
analyse the limitations of the measurement methods. Common to both of them is a
progressively higher uncertainty in the measurement of growth rates for wavenumbers
close to kR =0 and kR = 1, as shown in figure 13. This is a well-known limitation
motivated by the effect of natural noise in the system. If we are interested in the
observation of a mode with a given wavenumber, we apply a stimulation pressure
that produces a high initial amplitude of that mode. The amplitude must be high
enough to hold itself, throughout the complete evolution, much greater than the
amplitudes of the noisy modes; particularly, compared to those with the highest
growth rate. Obviously, the modes with non-dimensional wavenumbers tending to
either 0 or 1 are hardly observable as their growth rates are significantly lower than
those corresponding to kR � 0.7. This explains why the error of both methods in
figure 12 is greater as we move away from the maximum. This universal limiting
mechanism is the reason why we can never expect to fill experimentally the whole
range 0 <kR < 1. However, one of our goals is to describe the way to access to a
wider range of wavenumbers for which the growth rates are measurable with enough
precision.

There are two main risks in applying strong stimulation in order to get out from
noise. First, the phase with purely exponential growth may not take a significant part
of the whole process, or may even fully disappear. The consequence could be the
impossibility of accurately measuring growth rates by any of both methods. This has
been theoretically discussed in detail in Garcı́a & González (2008).

Second, the nonlinear evolution may become dependent on the initial conditions.
We must recall that the independence in the length of the nonlinear evolution
with respect to initial conditions is postulated by the breakup method. Although
nowadays no theoretical proof is available, Ashgriz & Mashayek (1995, figures 10–
12) numerically demonstrated that large enough initial amplitudes affect both the
breakup time and the sizes of satellites. Also in Chaudhary & Maxworthy (1980),
we can find experimental evidence about the change in the final evolution of jets
when the stimulation becomes stronger. This breaks the hypothesis about Lnl being
independent of the initial stimulation amplitude formulated in § 3.5.1. For low voltage
in the piezoelectric stimulation, the breakups have a similar form, as in our EHD
stimulation, but change significantly for higher voltages. With the results presented in
§ 4.3, we have demonstrated the actual consequences of strong stimulation in relation
to the breakup method. In figure 15, the overall agreement between theory and
experiments improves when we restrict the fitting of data to weak stimulation.

On the other hand, the amplitude-evolution method is not affected by this effect
when increasing the stimulation amplitude: in all the points in figure 12 corresponding
to this method, the growth rates come from restricting the fits to amplitudes lower than
0.1 times the unperturbed radius, independently of the initial amplitude. Besides, the
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averaging capabilities of the oscilloscope allow us to deal with weak signals, affected
by noise. The range of accessible wavenumbers is greater, as shown in figure 12. In
this sense, the amplitude-evolution method is superior to the breakup method. For
this reason, the point with the lowest growth rates near kR = 1 in that figure has been
obtained with the amplitude-evolution method.

6. Conclusions
The growth rates in capillary jets have been measured by means of two independent

methods: the breakup-time method, based on properties of the EHD stimulation,
which has been adapted from the existing breakup-length method and the amplitude-
evolution method, which uses a photometric technique well tested in the literature and
valid for any kind of stimulation. In the case of experiments with ink, the results from
both methods are in excellent agreement and match the corresponding theoretical
curve, once the dynamic surface tension is fitted. This fitted value is consistent with
an independent estimate of the dynamic surface tension from the finite-amplitude
natural vibration of a drop detached from the jet flow. Concerning the experiments
with an aqueous solution of salt through the breakup method, the agreement is even
better, with the additional advantage that no fit is needed as the surface tension is
known.

The Rayleigh dispersion relation, based on a linear temporal stability analysis of the
evolution of axisymmetric perturbations in a capillary jet, approximately describes
the experimental data obtained in this work. For this purpose, we have selected
intermediate values for the jet velocity in order to simultaneously minimize: (i) effects
typical from the spatial nature of the instability, (ii) gravity effects and (iii) the action
of the developing boundary layer in the gas adjacent to the free surface of the
jet. The first two effects are important for low velocities and the last one for high
velocities. The slight correction due to spatial effects is necessary for a more precise
comparison. Gravity effects are negligible in our case. Predictions from Rayleigh and
Sterling–Sleicher models are very close for our experimental conditions, and the data
dispersion does not allow to discern which is the best. In any case, calculations of
the air effect as those presented in Gordillo & Pérez-Saborid (2005), specific to each
experiment, should be necessary for precise comparison.

Both methods of measurement of growth rates give similar results in terms of data
dispersion in the range of wavenumbers for which the measurements are expected
to be more precise. To this respect, the amplitude-evolution method requires the
measurement region along the jet to be properly marked out: the initial transient,
where the subdominant mode is non-negligible, should be discarded, as well as the
nonlinear part of the evolution. The inclusion of non-axisymmetric modes in the
model is also necessary for the data processing, especially for small wavenumbers.

On the other hand, the breakup-time method is sustained on the hypothesis of
constant duration for both the initial transient and the final nonlinear evolution.
The transient is independent of the initial amplitude, but no theoretical analysis
has been done to prove that the time associated to the nonlinear evolution is
independent of the initial amplitude of perturbations. However, previous numerical
and experimental evidences reveal changes in the final nonlinear evolution of jets
as the initial deformations become stronger. For modes with kR close to zero, the
strong stimulation necessary to get them out from natural noise is a source of
systematic errors for the breakup method. In any case, the ease of implementation, its
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applicability to transparent liquids and its good accuracy make the breakup method
a competitive way of measuring growth rates of capillary jets.

Finally, we have demonstrated the opportunity of the EHD stimulation for the
design of a breakup method of measurement of growth rates, due to its clean
(quadratic free of resonances) dependence with the stimulation voltage, contrary
to other stimulation devices. The convenience of a shielding electrode for avoiding
systematic errors in the determination of growth rates and wavenumbers has also
been discussed.
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